SPRAI: Seakeeping prediction using artificial intelligence

Pablo Romero Tello

Naval Technology Area. Applied physics and Naval technology department Escuela Técnica Superior de Ingeniería Naval y Oceánica Universidad Politécnica de Cartagena (UPCT) E-mail: pablo.romero@upct.es

José Enrique Gutiérrez Romero

Naval Technology Area. Applied physics and Naval technology department

Escuela Técnica Superior de Ingeniería Naval y Oceánica

Universidad Politécnica de Cartagena (UPCT) E-mail: jose.gutierrez@upct.es Borja Serván Camas Centre Internacional de Metodes Numerics en Enginyeria (CIMNE) E-mail: <u>bservan@cimne.upc.edu</u>

Antonio J. Lorente López Naval Technology Area. Applied physics and Naval

technology department Escuela Técnica Superior de Ingeniería Naval y Oceánica Universidad Politécnica de Cartagena (UPCT) E-mail: antonioj.lorente@upct.es

TRANSFORMANDO LOS OCÉANOS: INNOVACIÓN e ingeniería naval para un mundo CONECTADO y SOSTENIBLE

CIMNE Excelencia Severo ochoa

General Index

I. Introduction and objectivesII. MethodologyIII. Data sets GenerationIV. TrainingV. ResultsVI. Conclusions

I. Introduction and objectives

In the field of Naval Architecture, the application of AI can be of considerable relevance.

This study presents the development of the SPRAI tool, based on AI algorithms, which allows the assessment of the **seakeeping** of a ship, with very **short pre-processing and calculation times**. The AI will determine the added masses, damping and external forces required to calculate the seakeeping of conventional monohull vessels.

 $(M + A_{ij})\ddot{\eta}_j + B_{ij}\eta_j + K_{ij}\eta_j = F_j e^{-i\omega t}$

I. Introduction and objectives

The methodology used for the generation of the SPRAI tool is described. This tool is capable of predicting the seakeeping of monohull vessels in displacement condition.

- The error made by the SPRAI must be acceptable.
- The inference time has to be very short.
- It must be able to solve the diffraction radiation problem in early design stages.

III. Data sets Generation: Base ships

III. Data sets Generation: Data Augmentation

INNOVACIÓN e ingeniería naval para un mundo CONECTADO y SOSTENIBLE

III. Data sets Generation: Encounter Frequency

TRANSFORMANDO LOS OCÉANOS: INNOVACIÓN e ingeniería naval para un mundo CONECTADO y SOSTENIBLE

Hypothesis

- □ The flow is considered potential.
- \Box The wave amplitude is small.
- A linear relationship between wave amplitude and ship motion is considered.
- \Box The ship is a rigid solid.

Resolución del problema

The BEM method is used in the frequency domain.

8

SEVERO

OCHOA

III. Data sets Generation: Mesh Transformation

III. Data sets Generation: Data processing

> Traslado: origin of coordinates (BEM) \rightarrow C.d.C. (training)

Normalisation of databases

ЩIJ

TECHNOLOGY

"Think human first"

$$\begin{cases} \overline{M} \ddot{x} + \overline{A_{xx}} \ddot{x} + \overline{A_{x\theta}} \ddot{\theta} + \overline{B_{xx}} \dot{x} + \overline{B_{x\theta}} \dot{\theta} + \overline{C_{xx}} x + \overline{C_{x\theta}} \theta = f \\ \overline{I} \ddot{\theta} + \overline{A_{\theta x}} \ddot{x} + \overline{A_{\theta \theta}} \ddot{\theta} + \overline{B_{\theta x}} \dot{x} + \overline{B_{\theta \theta}} \dot{\theta} + \overline{C_{\theta x}} x + \overline{C_{\theta \theta}} \theta = m \end{cases} \begin{cases} x \sim O(\xi) & \theta \sim O(\xi k) \\ \dot{x} \sim O(\xi \omega) & \dot{\theta} \sim O(\xi k \omega) \\ \dot{x} \sim O(\xi \omega^2) & \ddot{\theta} \sim O(\xi k \omega^2) \end{cases}$$
$$\begin{cases} 1 + \frac{a_{xx}}{\nabla \rho} + \frac{a_{x\theta}}{\nabla \rho} k_{ref} + \frac{b_{xx}}{\nabla \rho \omega_e} + \frac{b_{x\theta}}{\nabla \rho \omega_e} k_{ref} + \frac{c_{xx}}{\nabla \rho \omega_{ref}} + \frac{c_{xx}}{\nabla \rho \omega_{ref}} k_{ref} = \frac{f}{\nabla \rho \xi \omega_{ref}^2} \end{cases} \\ \begin{cases} 1 + \frac{a_{\theta x}}{V \rho \xi} + \frac{a_{\theta \theta}}{V \rho \xi} + \frac{b_{\theta \theta}}{V \rho \omega_e} + \frac{c_{\theta x}}{V \rho \omega_{ref}} + \frac{c_{\theta \theta}}{V \rho \omega_{ref}} + \frac{c_{\theta \theta}}{V \rho \omega_{ref}} = \frac{m}{I \xi \omega_{ref}^2 k} \end{cases} \end{cases} \\ k_{ref} = \frac{2\pi}{L_f} \omega_{ref} = \sqrt{g \frac{2\pi}{L_f}} \end{cases}$$

EXCELENCIA 11

SEVERO OCHOA

INNOVACIÓN e ingeniería naval para

un mundo CONECTADO y SOSTENIBLE

III. Data sets Generation: Data Filtering

INPU	T
Fn,	
$\begin{array}{c} \omega_0,\\ B_f \end{array}$	
$\left \frac{f}{L_f} \right $	
$\frac{D_f}{L_f}$,	
C _b ,	Í
C _f , C _m ,	
$\frac{X_B}{L}$,	
$\begin{bmatrix} L_f \\ Z_B \end{bmatrix}$	
$\overline{D_f}$ '	

III. Data sets Generation: Data Sets

 $m_{y\,120^o}, m_{y\,150^o}, m_{y\,180^o}$

 $m_{z\,30^{o}}, m_{z\,60^{o}}, m_{z\,90^{o}}, m_{z\,120^{o}}, m_{z\,150^{o}}$

TARGET $f_{x\,0^{o}}, f_{x\,30^{o}}, f_{x\,60^{o}}$ $f_{x\,90^{o}}$ $f_{x\,120^o}, f_{x\,150^o}, f_{x\,180^o}$ $\omega_{\rm e}$, $f_{y\,30^o}, f_{y\,60^o}, f_{y\,90^o}, f_{y\,120^o}, f_{y\,150^o}$ $f_{z\,0^{o}}, f_{z\,30^{o}}, f_{z\,60^{o}}, f_{z\,90^{o}},$ R $\omega_{\rm e}$ $f_{z\,120^o}, f_{z\,150^o}, f_{z\,180^o}$ $m_{x\,30^{o}}, m_{x\,60^{o}}$ Fn,ω $m_{x\,90^{o}}$ $Fn, \omega_{e},$ $m_{x\,120}^{o}$, $m_{x\,150}^{o}$ $m_{y\,0^{o}}, m_{y\,30^{o}}, m_{y\,60^{o}}$ Fn, ω $m_{y\,90^{0}}$

	(•	
INPUT			
$\frac{B_f}{L_f}, \frac{D_f}{L_f}, C_b, C_f, C_m, \frac{X_B}{L_f}, \frac{Z_B}{D_f}$			
$\frac{f}{f}, \frac{D_f}{L_e}, C_b, C_f, C_m, C_c, \frac{X_B}{L_e}, \frac{Z_B}{D_e}$			[<i>a</i>]
$\frac{B_f}{B_f}, \frac{D_f}{L_f}, C_b, C_f, C_m, \frac{X_B}{L_f}, \frac{Z_B}{D_f}$	ł		
$\frac{B_f}{L_f}, \frac{D_f}{L_f}, C_b, C_f, C_m, C_c, \frac{X_B}{L_f}, \frac{Z_B}{D_f}$		Í	[b ₁₁ ,
$\frac{B_f}{L_f}, \frac{D_f}{L_f}, C_b, C_m, C_c, \frac{X_B}{L_f}, \frac{Z_B}{D_f}$			

IAKGEI		
$[a_{11}^*, a_{13}^*, a_{31}^*]$		
$[a_{22}^*, a_{24}^*, a_{33}^*, a_{42}^*, a_{44}^*]$		
$[a_{15}^*], [a_{35}^*], [a_{51}^*], [a_{53}^*], [a_{55}^*]$		
$[a_{46}^*]$, $[a_{64}^*]$		
$[a_{26}^*], [a_{62}^*], [a_{66}^*]$		
$[b_{11}^*, b_{13}^*, b_{31}^*, b_{22}^*, b_{24}^*, b_{33}^*, b_{42}^*, b_{44}^*]$		
$[b_{15}^*], [b_{35}^*], [b_{51}^*], [b_{53}^*], [b_{55}^*]$		
$[b_{46}^*], [b_{64}^*]$		
$[b_{26}^*], [b_{62}^*], [b_{66}^*]$		

TADCET

IV. Training

- \succ 70% training, 15% validation y 15% test
- > MPL on Keras together with Tensorflow GPU-Nvidia
- \blacktriangleright Model Checkpoint \rightarrow Overfitting

Capas	3-4-5
Neuronas	30 - 40 - 50
Optimizadores	Adam, RMSprop
Funciones de activación	Sigmoid, ReLU
Máx. Epoch	300
Loss function	MAE

V. Results

"Think human first"

V. Results: General cargo

V. Results: Practical

V. Results: FPSO

V. Results: Sailing ship

V. Results: Work Vessel

1.20

1.00

0.80

0.20

0.00

4.00

6.00

8.00

20.60 2/88 0.40

1.20

1.00

10.00

12.00

 ω_0 [rad/s]

-+- RNA 30°

---BEM 90°

4.00

3.50

3.00

TRANSFORMANDO LOS OCÉANOS: INNOVACIÓN e ingeniería naval para un mundo CONECTADO y SOSTENIBLE

-BEM 30°

V. Results: Yacht

V. Results: Summary

Prediction error :

$$NRE_{i} = \frac{|t_{i}^{*} - p_{i}^{*}|}{m \acute{a}x(1, |t_{i}^{*}|)}$$

$$MNRE = \sqrt{\frac{\sum_{i=1}^{n} NRE_i^2}{n}}$$

Results:

- □ In the added mass and damping matrices we have an average MNRE of 6,09 % y 5,21 %.
- The average MNRE of the sine and cosine terms of the excitation forces are 3,95 % y 3,69 %.
- The average MNRE for RAOs typically less than 1 %.

VI. Conclusions

- ANNs to predict hydrodynamic loads for seakeeping in the early stages of design without the need to know the exact hull geometry. Fn range 0,025 to 0,30.
- □ An extensive, comprehensive and generalised database has been generated.
- A large number of ANNs have been generated and trained with a large number of hyperparameter combinations to identify the best ANN.
- □ The ANNs developed show similar accuracy to the **BEM** codes.
- □ Speed up to 4.000 is achieved compared to a conventional calculation code.

VI. Conclusions

"Think human first"

INNOVACIÓN e ingeniería naval para un mundo CONECTADO y SOSTENIBLE

. 11

0

5

TRANSFORMANDO LOS OCÉANOS: INNOVACIÓN e ingeniería naval para un mundo CONECTADO y SOSTENIBLE

Thanks for your time

SPRAI: Seakeeping prediction using artificial intelligence

pablo.romero@upct.es