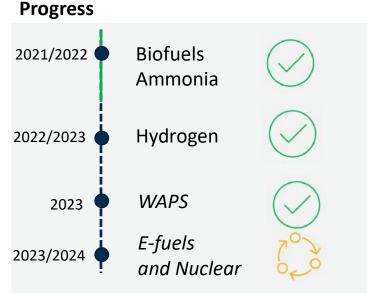

63RD INTERNATIONAL CONGRESS OF NAVAL ARCHITECTURE, MARINE ENGINEERING AND MARITIME INDUSTRY


Concluding on the potentials for Ammonia, Biofuel, Hydrogen and WAPS as green solution in shipping.

René Sejer Laursen / Director Global Sustainability Madrid, 24th of April /2024

EMSA project overview

Latest News - Update on Potential of Biofuels for Shipping [updated] - EMSA - European Maritime Safety Agency (europa.eu)

Latest News - Potential of Ammonia as Fuel in Shipping [updated] - EMSA - European Maritime Safety Agency (europa.eu)

Latest News - New report: the potential of hydrogen as a fuel in shipping - EMSA - European Maritime Safety Agency (europa.eu)

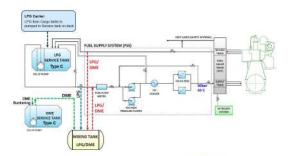
Publications - Potential of wind-assisted propulsion for shipping - EMSA - European Maritime Safety Agency (europa.eu)

Biofuels production pathways – TRLs

- There are many pathways available
- The current more developed pathways tend to provide less GHG reduction potential
- Promising pathways still require further development

			Fuel production		
Fuel category	End product	Production pathway	TRL 2019	TRL 2030	
	FAME	Transesterification	10	10	
	HVO	Hydrotreatment	10	10	
Diadiasala	HVO (from wood)	Wood extractives pulping/ catalytic upgrading	8/9	8/10	
Biodiesels	HVO (from algae)	Algae/oil extraction / catalytic upgrading	4/5	4/5	
	FT diesel	FT synthesis	6/8	8/9	
	DME	Lignocellulosic Gasification	6/8	8/9	
	Bioethanol	Fermentation	10	10	
	Bioethanoi	Waste based	8/9	10	
Bio-alchohols		Lignocellulosic hydrolysis	8/9	9/10	
DIO-AICHONOIS		Waste based	8/9	10	
Bio-methanol		Black liquor gasification	6/8	8/9	
		Lignocellulosic gasification	6/8	8/9	
	SVO		10	10	
Biocrudes	Pyrolysis oil	Lignocellulosic Pyrolysis/ catalysed upgrading	5/6	6/8	
Biocrudes	HTL biocrude	Lignocellulosic Hydrothermal liquefaction/ catalytic refining	2/4	4/5	
	Solvolysis oil	Lignocellulosic hydrolysis / solvolysis	4/5	6/8	
Gaseous	Liquefied biomethane	Sludge/maize/manure/residues Fermentation / digestion	10	10	
biofuels	Liquefied biomethane	Lignocellulosic Gasification	6/8	8/9	

Suitablility - biofuels


Note: Bio-methane and bio-methanol are chemical identical with methane and methanol – no change

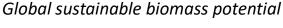
Fuel Property	Units	MGO – Diesel	FAME	HVO	
,		(Petroleum based)	(Biodiesel)	(Renewable Diesel)	
Cetane Number	-	40 – 55	50 – 65	80 – 99	
Density at 15°C	Kg/m ³	0.82-0.85	0.88	0.77-0.78	
Kinematic viscosity	mm²/	2.5-4.5	4.5	2525	
at 40°C	S	2.5-4.5	4.5	2.5-3.5	
LHV	MJ/Kg	42-44	37-38	34-44	
Oxygen content	%	0	11	0	
Sulphur content	ppm	< 10	< 10	< 10	
NOx Emissions	%	Baseline	+10%	-10% to 0	
(from combustion)	%	Baseime	+10%	-10% 100	
Lubricity	-	Baseline	Good	Poor (may require additives)	
Oxidative Stability / Storage stability	-	Baseline	Poor (Antioxidants to increase storage life or stability, or frequent bunkering is more likely)	Good	
Cold Flow Properties	-	Baseline	Poor	Good (only with isomerisation)	

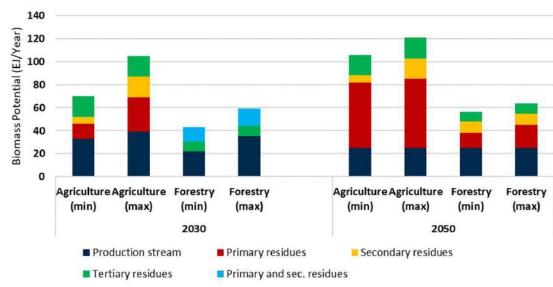
FAME and HVO: can be used in exsisting marine engines with a few pre-caution.

		MGO – Diesel		LF	LPG		
Fuel Property	Units	(Petroleum based)	DME	Propane	Butane		
Cetane Number	-	40 – 55	55 – 60	42-45	42-45		
Density at 15°C	Kg/m³	0.82-0.85	0.66	0.5	0.61		
Kinematic viscosity at 40°C	mm²/s	2.5 – 4.5	0.12-0.15	0.2	0.2		
LHV	MJ/Kg	42-44	28	46	45		
Oxygen content	%	0	34.8	()		
Sulphur content	ppm	< 10	0	0.	01		
Expected NOx Emissions (from combustion)	%	Baseline	- 20%	- 10%	to 15%		
Lubricity	-	Baseline	Poor	Between Base	eline and Poor		

DME similar to LPG, but LHV is lower - new engine development is required

Drop-in biofuels


- Fully drop-in
 - FAME
 - HVO
 - FT Diesel
 - Bio-methanol
 - Bio-ethanol
 - Bio-methane
- Not fully drop-in
 - DME
 - SVO
 - HTL Biocrude
 - Pyrolysis oil
 - Solvolysis oil


Biofuel	Replaced fossil fuel	Drop in properties/blend %	Remarks
FAME	Distillates	Up to 100% v/v	Subject to confirmation by Engine Designer for blends above 7% v/v FAME
HVO	Distillates	Up to 100% v/v	Subject to confirmation by Engine Designer
FT diesel	Distillates	Up to 100% v/v	Subject to confirmation by Engine Designer
DME	Distillates – LPG in dual fuel engines	Up to 20-30% v/v – up to 100% v/v	Subject to confirmation by Engine Designer
Bio-methanol	Methanol	Up to 100% v/v	For Methanol DF Engines and Fuel Supply System
Bio-ethanol	Distillates in Otto engines – Methanol in dual fuel 2-stroke engines.	Up to 100% v/v	Not enough information about use in marine engines – probably doable by introducing minor modification to the methanol fuel injection system
SVO	Fuel oil	Up to a limited share	Subject to confirmation by engine Designer
Pyrolysis oil	Fuel oil	Not a drop-in fuel	Properties vary widely and change with ageing. Acidic and corrosive. Can be upgraded to a drop-in fuel.
HTL biocrude	Fuel oil	Up to a limited share	Little information about use in blends in marine engines. Can be upgraded to a drop-in fuel.
Solvolysis oil	Fuel oil	Up to a limited share	Little information about use in blends in marine engines. Can be upgraded to a drop-in fuel.
Liquefied biomethane	LNG	Up to 100% v/v	For DF and Gas Engines, and Fuel Gas Supply System

Biofuels availability and scalability

- Biofuel availability for the maritime sector is determined by
 - The availability of feedstocks; and
 - Competition with other sectors.
 - The availability of feedstocks depend on:
 - Sustainability criteria;
 - Type of feedstock: lignocellulosic / algae / carbohydrates / bio oils & fats.
 - Competition with other sectors depends on:
 - Alternative sources; and
 - Policy measures.

Energy demand from shipping: 18 EJ in 2018

Conclusions

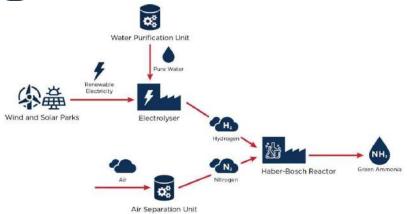
Bio

Ranking was performed based on:

- Fuel production costs developments
- Production maturity
- GHG reduction potential
- Feedstock availability
- Suitability of engines

- **1.** Bio-methanol, FT diesel, biomethane from digestion of waste and residues and DME arrive very close
- 2. FAME from FOGs, biomethane from gasification
- **3.** FAME from vegetable oils, HVO from FOGs and from vegetable oils arrive

Main conclusions:


- We do not see major bottlenecks (Safety aspects)
- Regulatory (ship-related) bottlenecks are minor or resolvable
- Need for common and harmonized sustainability criteria and LCA guidelines:
 - International & cross-industry

Ammonia Availability and Scalability

HB is the most mature process

Process Type	Expected Efficiency [up to]
Pathway 1 Electrolysis and Haber-Bosch synthesis	~72%
Pathway 2	9%
Direct solar hydrogen production	[up 70%]
Pathway 3 Biogenic hydrogen production	~57%
Pathway 4	12-37%
Non-thermal plasma synthesis	[up to 45%]
Pathway 5	14-62%
Electrochemical ammonia synthesis	[up to 90%]

Grey NH3
Production

235 Mtons/year

Green NH3 Announced

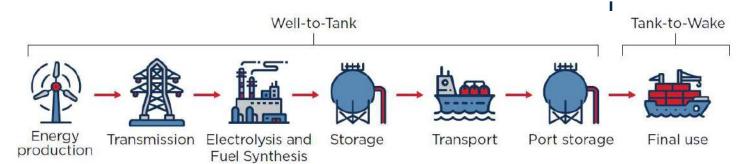
>133 Mtons/year

*annouced blue and green ammonia production

What are the challenges?

- Many sectors will have demand for green or blue ammonia.
- Green electricity will also be in high demand
- Demand depends on policy, many of which are not yet confirmed
- Green production needs to be efficient, utlized at maximum capacity and this poses challenges:
 - Location, pipelines, access to ports
 - Connection to grid (sustainable?)
 - Potentially oversized

Ammonia sustainability


The challenge is green electricity

- Certification mechanisms
- If connected to the grid, need to ensure the source of that energy
- Transportation, if not decarbonised, may lead to increased footprint

Engine still under development

- NOx & N2O slip uncertain
- Pilot fuel usage

Pollutant	HFO, MGO	LNG	Ammonia (combusted in engines)
SO ₂ and metals	Present	Not present	Not present
Carbon monoxide and hydrocarbons	Present	Present or increased	Not present
VOCs and PAHs	Present	Reduced	Not present
NO _x **	Needs SCR for Emission Control Area	Otto engines meet Emission Control Area without SCR	Needs SCR for Emission Control Area
Direct particulate matter	Present	Reduced	Reduced
Ammonia (NH ₃) ***	Low	Not present	Unknown
N ₂ O	Present	Present	Present or increased****
CH ₄	Low	Present at Otto engines	Not present
CO ₂ *****	Present	Present	Not present

Ammonia sustainability

Other Environmental Impacts (production of Ammonia)

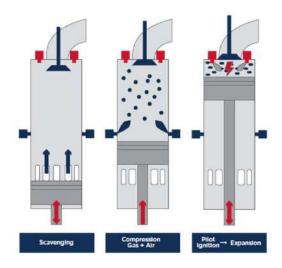
- Production of hydrogen requires pure, deionized water. The amount of (fresh) water can increase
 water scarcity. Desalination and rejection of brines can be detrimental to ocean biodiversity and
 marine life
- Generating green electricity will require land (solar or onshore wind)
- Production of Solar should avoid using land used for crops

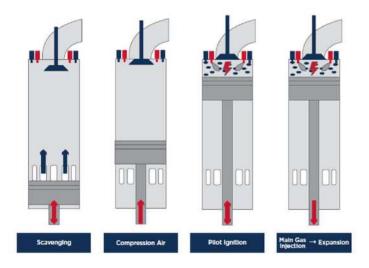
Where Solar?

- Northern Chile
- Western Australia
- Northeast Brazil
- Northern Africa
- Pats of US and China

Where Wind?

- Avoid land used for crops (Australia, Chile, etc)
- Using offshore may be an option in Western Europe and USA
- Inland transportation has been ongoing for many decades. Accidents happened and handling of ammonia is known.
- Ammonia spills can be harmful for marine life, need for further evaluation


Suitability: Engine Technology – burning ammonia



Ammonia is resistant to autoignition, it requires an ignition source through out the period where it burns

Low Pressure Gas Injection

High Pressure Gas Injection

Conclusions

NH₃

Ammonia as a fuel is likely to take place. It presents a series of advantages and is a promising fuel:

- Known and well-estabilished production process
- Naturally carbon-free, although attention is to be given to NOx, N2O and Pilot fuel and trully green production pathways
- It is known to shipping as a cargo (IGC covers it), and poses many challenges to be used as a fuel
- There are challenges to overcome to handle its corrosivity and toxicity: bunkering, engine, fuel supply systems.
- However, it has been used for many decades and there is substantial knowledge available

Main challenges:

- Ensure availability of green energy and competition with other sectors
- High costs associated with green ammonia production
- Safety and Regulations concerns: need to accelerate awareness and regulatory framework developments
- Need more knowledge on spillage and other environmental aspects
- IMO Guidelines to be ready by 2025

H₂

Hydrogen Suitability - Storage

			Fuel Pi	roperties				Storage	FGSS/FSS
FUEL	Storage Conditions (liquid state)		Specific Energy (MJ/kg)	Energy Density (MJ/L)	Carbon Content	C _F (t-CO ₂ /t- Fuel)	kg CO ₂ /kWh	Fuel Tank Volume Compared to MGO	Supply Pressure (bar)
	Temperature	Pressure						(not including insulation etc)	
MGO	atm	atm	42.7	38.4	0.8744	3.206	0.2701	1	8
LNG	-162C	atm (or pressurised	48	21.6	0.75	2.75	0.2061	1.8	300 (Diesel)
		~5-10 bar)							5 ~ 13(Otto)
Ethane	-89C	atm (or semi-ref ~ 5 bar)	47.8	27.2	0.7989	2.927	0.2205	1.4	380 (Diesel) ~ 5 (Otto)
Methanol	atm	atm	19.9	15.7	0.375	1.375	0.2486	2.4	10-15
LPG	-48C (Propane)	atm (or fully	46.3 (Propane)	23.2	0.8182	3.00	0.2331	1.7	50
	(- -	pressurised up to 18 bar)	45.7 (Butane)	27.4	0.8264	3.03	0.2385	1.4	
Ammonia	-33C	atm (or fully pressurised up to~ 18 bar)	18.6	12.9	0.0*	0.0*	0.0*	3.0	83
Hydrogen	-253C	atm (or pressurised ~100-300 bar)	120.0	8.5	0.0*	0.0*	0.0*	Liquid > 4.5	3-10 bar (Otto)
								Pressure (25- 700 bar) > 8	

Suitability - LH₂ Containment Systems

Independent Tanks

Type A

(P < 700 mbar) Full Secondary Barrier

Type B

(P < 700mbar) Partial Secondary Barrier

Designs not in use

Type C

(P > 2000 mbar)No Secondary Barrier

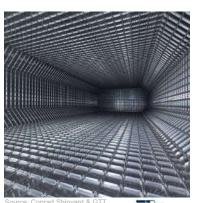
Designs already in use

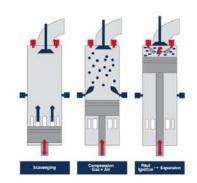

Integral Tanks

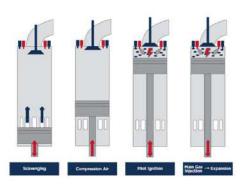
Membrane

(P < 700 mbar) Full Secondary Barrier

Designs not in use


Candidates for Liquefied Hydrogen

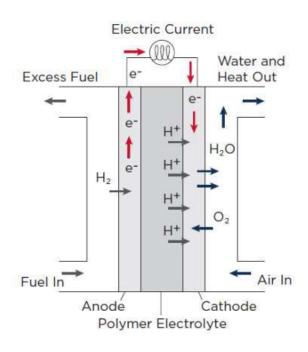



Suitability: Engine Technology – burning hydrogen

	Low-Pressi	ure (LP)	High-Pres	sure (HP)	
Gas mode cycle type	Otto)	Diesel		
Gas injection / Combustion principles- methane and hydrogen	LP gas-admission valves loca pre-mixed gas/air and in-cyl (diesel pilot fuel required fo	inder compression	HP gas-injection valves located on the cylinder cover for direct gas injection into the cylinder for diffusion combustion (diesel pilot fuel required for start of combustion)		
Fuel	Methane gas	Hydrogen (guid. values)	Methane	Hydrogen (guid. values)	
Fuel-supply pressure	~5 bar (4-stroke) <13-16 bar (2-stroke)	3-16 bar	300 bar	~300 bar	
Injection pressure	Same as supply pressure	Same as supply pressure	Same as supply pressure	Same as supply pressure	
Liquid pilot % @MCR	0.5 – 1.0	0.5 – 15%	0.5 – 1.5	0.5-5	
BMEP [bar]	17.3	~17	21.0	21.0	
Min load for DF mode [%]	~5	~5	~5	~5	
IMO NOx Compliance	Tier II (oil mode) Tier III (gas mode)		Tier II (oil mode) Tier II (gas mode)	Tier II (oil mode) Tier II (hydrogen mode)	
Fuel Quality Sensitive	Yes - Requirement for Methane Number	Yes	No	No	
Fuel Slip	Yes	Insignificant	Insignificant	Insignificant	
Knock/Misfire Sensitive	Yes	Yes, however the risk of misfire is low	No	No	
Load response	reduced 5 Studies on Alternati	reduced	unchanged	unchanged	

Low Pressure Gas Injection

High Pressure Gas Injection



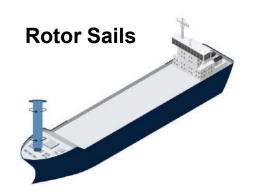
© MAN ES

Suitability – Hydrogen fuel cell

Туре	Operating Temperature	Electrical efficiency*	Applications
Proton Exchange Membrane (PEM)	30-120 °C	50-60%	Vehicles and mobile applications and lower power Combined Heat and Power (CHP) systems
Alkaline Fuel Cell (AFC)	100-250 °C	50-60%	Used in space vehicles
Phosphoric Acid Fuel Cell (PAFC)	150-220 °C	40%	Large numbers of 200 kW CHP systems in use
Molten Carbonate Fuel Cell (MCFC)	600-700 °C	50%	Suitable for medium to large scale systems
Solid Oxide Fuel Cell (SOFC)	650-1,000 °C	60%	Suitable for all sizes of systems

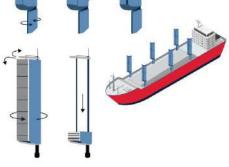
Conclusions

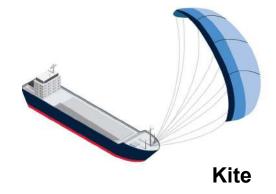
Hydrogen presents a series of advantages:

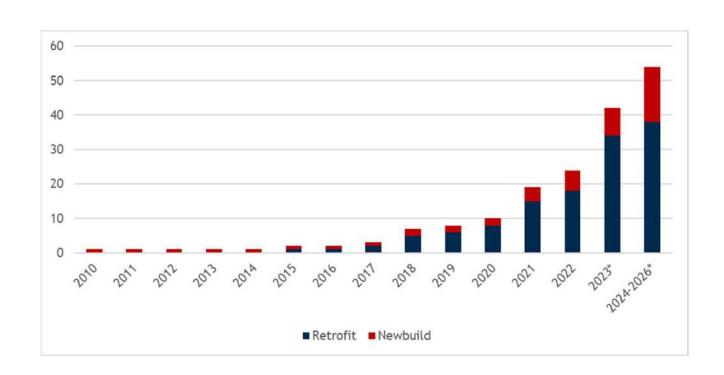

- Naturally carbon-free, although attention is to be given to NOx, and trully green production pathways
- Known production process

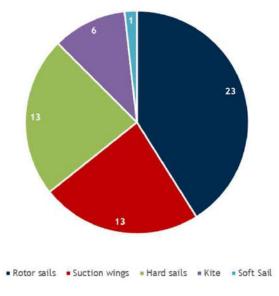
Main challenges:

- Ensure availability of green energy and competition with other sectors
- High costs associated with green hydrogen production and transpotation
- Safety and Regulations concerns: need to accelerate awareness and regulatory framework developments
- Volumefactor is 4.5 times bigger than for fuel oil. Liquid at -253°C.
- Small molecule which difficult to contain and it is an indirect GHG, 5-11 times more potent than CO₂
- Infrastructure of hydrogen is not established and it is cost intensive.




WAPS Overview of systems




Soft sails

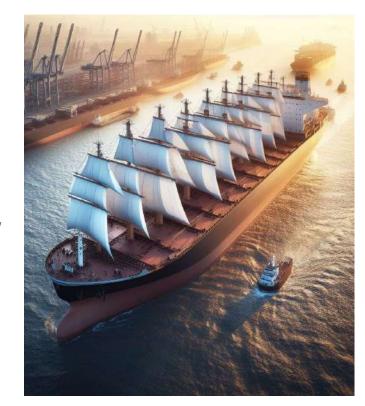
WAPS Overview of installations

Number of ships (*planned to be) equipped with a wind propulsion system

Number of realised and planned installation of systems per technology.

Wind HAZID – General Findings

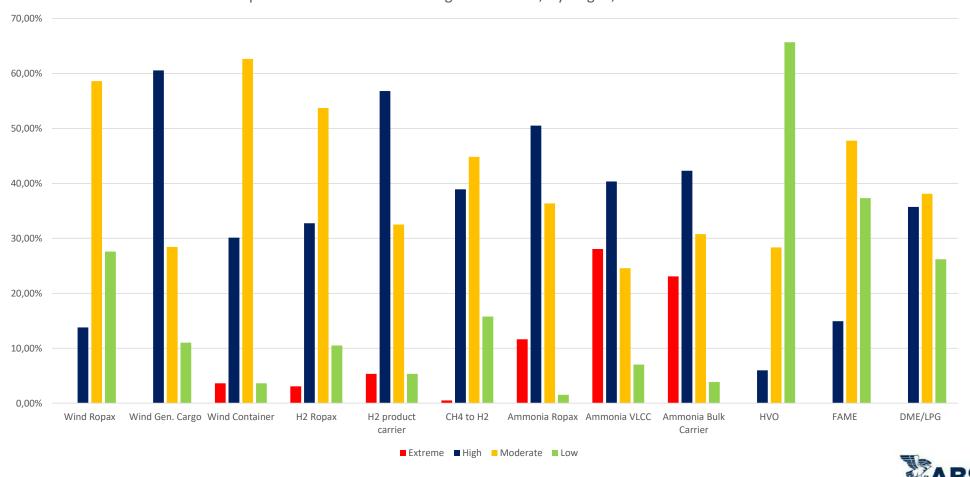
- WAPS may impact vessel manoeuvrability and controllability
- Equipment number could be affected (mooring equipment)
- Stability type issues e.g. heeling moments with regulatory requirements for intact and damage stability not sufficiently adapted
- Motions/weather conditions beyond design limits of WAPS or the vessel
- Fire related issues increase in fire load on deck, escape routes



Courtesy of IWSA

Wind HAZID – Common Findings

- Structural issues vibration, fatigue, green water, extreme environmental
- Interference with deck operations
- Obstructions bridge visibility, radar, navigation lights, cargo handling equipment, helicopter winching
- Significant change in air draft documentation needs to be updated + crew awareness
- WAPS to be evaluated for dropped object potential/impacts, prevention/mitigation
- Working at height risks in the event this is required



Microsoft Bing Image Creator

12 HAZID's - Conclusions

Comparison of Hazard Risk Ranking Across Wind, Hydrogen, Ammonia & Biofuels

Thank You

www.eagle.org

