



# WIND-TUNNEL INVESTIGATION OF FRIGATE-HELICOPTER AERODYNAMIC INTERFERENCE AND MITIGATION OF ADVERSE EFFECTS BY FLOW CONTROL

Juan Carlos Matías García

matiasgjc@inta.es

Rafael Bardera

barderar@inta.es

Estela Barroso Barderas

barrosobe@inta.es

Experimental Aerodynamics

National Institute for Aerospace Technology (INTA)







# CONTENT

1. INTRODUCTION

## 2. EXPERIMENTAL SET-UP

- 2.1. INTA T1 Wind Tunnel
- 2.2. Particle Image Velocimetry (PIV)
- 2.3. Frigate model
- 2.4. Helicopter model

## 3. RESULTS

- 3.1. PIV helicopter and frigate
- 3.2. Helicopter aerodynamic forces
- 3.3. Flow Control
- 4. CONCLUSIONS







# CONTENT

## 1. INTRODUCTION

## 2. EXPERIMENTAL SET-UP

- 2.1. INTA T1 Wind Tunnel
- 2.2. Particle Image Velocimetry (PIV)
- 2.3. Frigate model
- 2.4. Helicopter model

## 3. RESULTS

- 3.1. PIV helicopter and frigate
- 3.2. Helicopter aerodynamic forces
- 3.3. Flow Control
- 4. CONCLUSIONS







# **1. INTRODUCTION**

Helicopters perform **hovering flight** close to objects and structures.

Military frigates are composed of non-aerodynamic bodies and generate **complex flow patterns** for helicopter operations.

Flow shedding, high-velocity gradients and turbulence intensities

 $\rightarrow$ 

- Effect in Increase
- aircraft stability Pilot workload











# **1. INTRODUCTION**

The aerodynamic interference helicopter – frigates can be analyzed...

### **Numerical studies**

- Modeling pilot responses in flight simulators
- Pilot's workload estimation

## Flow measurements on real frigates.

#### **Experimental wind tunnel tests**

- Pressure and/or velocity determination
- Flow visualization (smoke or PIV).
- Force measurements.

**Research in flow control devices** to improve the aerodynamic flow around them





**1. INTRODUCTION** 





TRANSFORMANDO LOS OCÉANOS: INNOVACIÓN e ingeniería naval para un mundo CONECTADO y SOSTENIBLE





Measurements at wakes of commercial and research frigates. Flow frequency **spectra**.

Frigate – helicopter interference previous work at (INTA)

Studies of helicopter rotors in ground effect on the flight deck.

**PIV analysis:** flow of a helicopter rotor, full helicopter and in combination with frigates.

Force and torque measurements on scaled helicopters during recovery maneuvers.

Flow Control: with passive and active proposals.







# 1. INTRODUCTION

4

The aim of this study is to present an example of experimental results obtained in the wind tunnel of the National Institute for Aerospace Technology (INTA) to...

- 1. Characterize the **aerodynamics on the flight deck** of a frigate
- 2. Evaluate its possible interaction with the helicopter maneuvers
- 3. Present proposals to reduce the adverse effects found by means of **flow control**.







1. INTRODUCTION

## 2. EXPERIMENTAL SET-UP

- 2.1. INTA T1 Wind Tunnel
- 2.2. Particle Image Velocimetry (PIV)
- 2.3. Frigate model
- 2.4. Helicopter model
- 3. RESULTS
  - 3.1. PIV helicopter and frigate
  - 3.2. Helicopter aerodynamic forces
  - 3.3. Flow Control
- 4. CONCLUSIONS



TRANSFORMANDO LOS OCÉANOS: INNOVACIÓN e ingeniería naval para un mundo CONECTADO y SOSTENIBLE







# 2. EXPERIMENTAL SET-UP

#### 2.1. INTA T1 Wind Tunnel

- Closed-circuit
- Elliptical open test section 2 m × 3 m
- Engine power 420 kW
- Max. flow velocity
- Turbulence levels



60 m/s

< 0.5 %.

#### 2.2. Particle Image Velocimetry (PIV)

- Tracer particles seeded in the flow and are illuminated by a pulsed laser plane (Nd:YAG)
- Photographs capture the particles positions at two times synchronized with the laser pulses, separated (Δt).



5





# 2. EXPERIMENTAL SET-UP

2.3. Frigate model

SFS2 - Simple Frigate Shape 2

**Proposed by a research group** oriented to the analysis of aerodynamic ship wakes, within a Technical Cooperation Program (TTCP).

**Basic geometries** above the waterline of a generic frigate (bow, superstructure, flight-deck)

Scale1:100Wind Velocity $8.5 \text{ m/s} \rightarrow Re > 10^5$ 







# 2. EXPERIMENTAL SET-UP

#### 2.4. Helicopter model

## HELIBAL (HELIcopter BALance)

Internal balance with strain gauges

Designed, manufactured, and calibrated in INTA

Six-component balance for a scaled helicopter model of a Sea King SH-3.

ForcesThrust  $F_z$ , Drag  $F_x$  and Lateral  $F_y$ TorqueRoll  $M_x$ , pitch  $M_y$  and yaw  $M_z$ 

#### **Flow similarity**

thrust coefficient  $(C_T)$  and advance ratio (J) equal for the scaled and real helicopter.

| Rotor revolutions    | 8,500 rpm |
|----------------------|-----------|
| Wind tunnel velocity | 8.5 m/s   |



7





- 1. INTRODUCTION
- 2. EXPERIMENTAL SET-UP
  - 2.1. INTA T1 Wind Tunnel
  - 2.2. Particle Image Velocimetry (PIV)
  - 2.3. Frigate model
  - 2.4. Helicopter model

## 3. RESULTS

- 3.1. PIV helicopter and frigate
- 3.2. Helicopter aerodynamic forces
- 3.3. Flow Control
- 4. CONCLUSIONS



TRANSFORMANDO LOS OCÉANOS: INNOVACIÓN e ingeniería naval para un mundo CONECTADO y SOSTENIBLE







x

# 3. RESULTS

#### Three different recovery maneuvers:







3.1. PIV helicopter and frigate



TRANSFORMANDO LOS OCÉANOS: INNOVACIÓN e ingeniería naval para

ASOCIACIÓN DE INGENIEROS NAVALES Y OCEÁNICOS DE ESPAÑA

## IROS ESPAÑA Un mundo CONECTADO y SOSTENIBLE





# 3. RESULTS

#### 3.2. Helicopter aerodynamic forces





TRANSFORMANDO LOS OCÉANOS: INNOVACIÓN e ingeniería naval para un mundo CONECTADO y SOSTENIBLE

#### **Force Coefficient**



#### **Torque Coefficient**



where i=(x,y,z), and

| ρ | air density                        |
|---|------------------------------------|
| Ω | rotor revolutions 8,500 rpm        |
| R | rotor radius 0.08 m                |
| S | rotor surface $0.0201 \text{ m}^2$ |



Instituto Nacional de Técnica Aeroespacial

10





3.3. Flow Control

11



TRANSFORMANDO

INNOVACIÓN e ingeniería naval para un mundo CONECTADO y SOSTENIBLE

ASOCIACIÓN DE INGENIEROS NAVALES Y OCEÁNICOS DE ESPAÑA LOS OCÉANOS:



# 3. RESULTS

#### 3.3. Flow Control

#### **Comparative Analysis**







TRANSFORMANDO LOS OCÉANOS: INNOVACIÓN e ingeniería naval para un mundo CONECTADO y SOSTENIBLE

| Configurations                              |                                                                                                                     |  |  |  |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|--|--|
| FC                                          | Flow Control                                                                                                        |  |  |  |
| Base<br>CR<br>B – D<br>S – BT – 3<br>R-best | Base Hangar<br>Circular Roof Hangar<br>Blowing from hangar Door<br>Suction from flight-deck<br>Coanda Effect (roof) |  |  |  |







- 1. INTRODUCTION
- 2. EXPERIMENTAL SET-UP
  - 2.1. INTA T1 Wind Tunnel
  - 2.2. Particle Image Velocimetry (PIV)
  - 2.3. Frigate model
  - 2.4. Helicopter model

## 3. RESULTS

- 3.1. PIV helicopter and frigate
- 3.2. Helicopter aerodynamic forces
- 3.3. Flow Control

## 4. CONCLUSIONS



TRANSFORMANDO LOS OCÉANOS: INNOVACIÓN e ingeniería naval para un mundo CONECTADO y SOSTENIBLE







# 4. CONCLUSIONS

**INTA wind tunnel** experiments to determine aerodynamic interaction between frigate and helicopter operations



Non-dimensional Velocity Contours



13

Stern approach (S):

Incident velocities 70 - 30 % of the free-stream velocity.

Diagonal (D) and L-shape (L) approaches:

Initial phases non affected. Last phases immersed on recirculation region.









# 4. CONCLUSIONS

**INTA wind tunnel** experiments to determine aerodynamic interaction between frigate and helicopter operations







TRANSFORMANDO

# 4. CONCLUSIONS

INTA wind tunnel experiments to determine aerodynamic interaction between frigate and helicopter operations

| Flow Control                                           | BASE                                                                                                 | 10  | 00                   | •    | Cr | CrDetachment lengthLSALow Speed Area                                                                       |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----|----------------------|------|----|------------------------------------------------------------------------------------------------------------|
| Pasive Flow Control                                    |                                                                                                      |     | 90<br>80<br>70<br>60 |      |    | <b>Passive Flow Control</b><br>Hangar geometry modification<br>Reductions of $C_r$ 20% and <i>LSA</i> 58%. |
| CR-0 Deg                                               | BaseBase HangarCRCircular Roof HangarB - DBlowing from hangar DoorS - BT - 3Suction from flight-deck | (%) | 50 -<br>40 -<br>30 - |      |    | Active Flow Control<br>Coanda Effect<br>$C_r$ = 22 % and LSA = 4 %                                         |
| <i>C<sub>V</sub></i> = 2.35<br>3.0 bar<br><i>Rbest</i> | <b>R-best</b> Coanda Effect (roof)                                                                   | ]   | 20<br>10<br>0        | Base | CR | R-best Instituto<br>R-best                                                                                 |





# 4. CONCLUSIONS

16



## GOAL: maximum safety during helicopter recovery maneuvers on frigates.







# THANKS FOR THE ATTENTION ¿Questions?

