Optimization of a Frigate's Operability Through Machine Learning

b.s.

Congreso Internacional de Ingeniería Naval e Industria Marítima Madrid, 24-26 abril, 2024

TRANSFORMANDO LOS OCÉANOS: INNOVACIÓN e ingeniería naval para un mundo CONECTADO y SOSTENIBLE

Pablo Romero Tello

Naval Technology Area. Applied physics and Naval technology department Escuela Técnica Superior de Ingeniería Naval y Oceánica Universidad Politécnica de Cartagena (UPCT)

E-mail: pablo.romero@upct.es

José Enrique Gutiérrez Romero

Naval Technology Area. Applied physics and Naval technology department

Escuela Técnica Superior de Ingeniería Naval y Oceánica Universidad Politécnica de Cartagena (UPCT)

E-mail: jose.gutierrez@upct.es

TRANSFORMANDO LOS OCÉANOS: INNOVACIÓN e ingeniería naval para un mundo CONECTADO y SOSTENIBLE

Borja Serván Camas

Centre Internacional de Metodes

Numerics en Enginyeria (CIMNE)

E-mail: bservan@cimne.upc.edu

Samuel Ruiz Capel Department of Built Environment Oslo Metropolitan University (OsloMet) E-mail: <u>samuelru@oslomet.no</u>

CONTENTS

- I. INTRODUCCTION
- II. OBJECTIVES
- III. SPRAI
- IV. METHODOLOGY
- V. APPLICATION CASE
- VI. RESULTS

VII. DISCUSSION

VIII.CONCLUSIONS

I. INTRODUCTION

- In this work a pre-trained Artificial Neural Networks (SPRAI) will be used to assess seakeeping scenarios of a Frigate.
- **Operativity** in military ships is crucial to mission deploy. It is expected to sail anywhere in the world, at any time of the year and in any sea state.
- Ship operativity can be defined as probability of a task can be made with effectiveness and safety .
- Equipment should be operative in safety during ship navigation.

• Ship shapes and mass distribution are essential to accomplish the seakeeping key performance indicators in ship missions.

OBJECTIVES

- Optimization using massive exploration of different ship geometries to improve operativity of a frigate.
- SPRAI (developed by the authors) tool will be used to carry out massive analysis.
- **Operativity** will be assessed for different operational zones, • with different operational profiles of a frigate. We will use **Operational Effectiveness (OE).**
- To accomplish with the frigate operativity different Key ٠ Performance Indicators will be assessed: MSI, maximum pitch and roll movements, vertical and horizontal RMS acceleration, deck wetness, propeller emergence, and slamming.

II. SPRAI

What is SPRAI and what is it used for?

- SPRAI is a seakeeping prediction tool based on artificial intelligence.
- SPRAI has been developed to predict the seakeeping parameters of conventional monohull ships navigating under displacement conditions (no planning).

About SPRAI

• SPRAI is based on Artificial Neural Networks (ANNs). These ANNs have been trained for years using a dataset of some 20,000 ships. The training data was generated using a seakeeping code based on the Boundary element method (BEM) in the frequency domain. SPRAI is based on the work of Romero-Tello et al (2023) and Romero-Tello et al (2024).

References:

- Romero-Tello, P., Gutierrez-Romero, J. E., and Serván-Camas, B. Prediction of seakeeping in the early stage of conventional monohull vessels design using artificial neural networks. Journal of Ocean Engineering and Science, Volume 8, Issue 4, August 2023, Pages 344-366.
- Romero-Tello, P. Diseño de Buques Adaptado al Comportamiento en la Mar Mediante Inteligencia Artificial . Tesis doctoral. Universidad Politécnica de Cartagena (2024).

IV. METHODOLOGY

	Hull and Helicopter opera	tions criteria	
Criterion Response	Location	Criterion Levels	
		Helicopter Recovery	
Vertical Velocity, RMS	Helicopter Platform	2.0 m/s	
		Criteria for the hull (monohull)	
Deck Wetness	Worst Station in bow region	30 occurrences / hour	
Bottom Slamming	Worst Station in bow region	20 occurrences / hour	
Propeller Emergence	1/4 Propeller Diameter	90 occurrences / hour	
		Default Criteria for the personnel	
Pitch, RMS		1.5 deg	
Roll, RMS		4 deg	
Vertical Acceleration, RMS	Bridge	0.2 g	
Lateral Acceleration, RMS	Bridge	0.1 g	
Relative Wind, Mean Value	Flight Deck	35 kn	
		Recommended Criteria for the personnel	
Motion Sickness Incidence MSI	Task Location	20% of crew @ 4 hours	
Motion Induced Interruption MII	Task Location	1 / min	
Lateral Acceleration, RMS	Bridge	0.1 g	
Relative Wind, Mean Value	Task Location if on Weather Deck	35 kn	

$$S_{ii}(\omega) = |RAO_{ii}|^2 \cdot S_{\xi\xi}(\omega)$$

$$MSI (\%) = 100 \times \Phi \left\{ \frac{\log \left| \frac{\eta_{33}}{g} \right| - \mu_{MSI}}{0.4} \right\}$$
$$a v_{RMS} = \sqrt{m_{4_{33}}}$$
$$a h_{RMS} = \sqrt{m_{4_{22}}}$$
$$mov_{máx} = \sqrt{2 \ln(N)} \sqrt{m_0}$$

IV. METHODOLOGY. Operational Effectiveness

It measures the probability (**P**) of the ship's operability under certain conditions as the product of the probabilities of occurrence of each conditional parameter.

The total probability will be multiplied by (K), which will be 0 or 1 depending on whether the KPI is accomplished. The number of evaluations for a single vessel can become inordinate, if all possible combinations are considered.

$$N_{eval} = t \cdot p \cdot \prod_{i} (n_i \cdot m_i)$$

where t is the number of KPIs, p is the number of points to evaluate in the vessel, and n and m are the size of the matrix considered for each probability parameter **i**.

- SPRAI enables the operability optimization by massive evaluation of ship's main form factors.
- This analysis can be carried out during the earlier ship design stages.

V. APPLICATION CASE

DTMB 5415 was a model conceived as a preliminary design for the U.S. Navy combat ships in the 1980s. The hull geometry includes a sonar dome and transom stern. It has twin propeller.

Characteristics	Unit	Value
Length overall, L _{OA}	m	153,300
Length between perpendicular, L_{pp}	m	142,200
Maximum beam, B _{OA}	m	20,540
Flotation beam, L_{FL}	m	19,100
Depth, D	m	12,470
Draught, T	m	6,160
Submerged volume, ∇	m ³	8424,4
Displacement, Δ	t	8636,0
KM	m	9,493
KG	m	7,555
GM	m	1,938
LCG	m	70,137
C _b	- 1	0,505
C _f	- 10	0,717
C _p	-	0,616
C _m	- 1	0,815
Roll radius of gyration, R_{xx}	m	0,4·B
Pitch radius of gyration, R _{vv}	m	0,25·L _{pp}
Yaw radius of gyration, R _{zz}	m	0,25·L _{pp}

V. APPLICATION CASE

		Probability of Ship Course - Fn						
		0°	30°	60°	90°	120°	150°	180°
	0,05	0,02	0,02	0,02	0,02	0,02	0,02	0,02
	0,10	0,07	0,07	0,07	0,07	0,07	0,07	0,07
En	0,15	0,30	0,30	0,30	0,30	0,30	0,30	0,30
	0,20	0,50	0,50	0,50	0,50	0,50	0,50	0,50
	0,25	0,10	0,10	0,10	0,10	0,10	0,10	0,10
	0,30	0,01	0,01	0,01	0,01	0,01	0,01	0,01

Points of analysis Puente Lanzador VLS Mk41 Lanzadores Chaff Cañón Otto Melara Helipuerto Lanzatorpedos Bulbo Hélice (sonar de casco) 4 navigation zones (9, 17, 25, and 26) 121 points (scatter plot Hs -Tp) 6 velocity considered $2,6 \times 10^{6}$ 7 ship courses assesments / ship 4 seasons 8 points of analysis

APPLICATION CASE. Ship candidates V.

Parameter	Range
Length between perpendicular, L_{pp}	[120,7; 163,3] m
Flotation Beam, B _{FL}	[16,235; 21,965] m
Draught, T	[5,228; 7,073] m
Flotation coefficient, C _f	[0,701; 0,948]
Midship coefficient, C _m	[0,693; 0,937]

SEVERO

OCHOA

Optimization constraints:

- Displacement is constant. ٠
- Six parametric variations for each parameter. ٠
- Block coefficient should be within the range of ± 15 % of the original ship ٠

IV. APPLICATION CASE. Initial verifications

"Think human first"

INNOVACIÓN e ingeniería naval para un mundo CONECTADO y SOSTENIBLE

excelencia 13

SEVERO OCHOA

V. APPLICATION CASE. Results

• North Atlantic navigation reduces OE significantly

IV. APPLICATION CASE. Results

	Est 1	Est 2	Est 3	Est 4	
0-10%	4799	3870	2279	3965	
10%-20%	296	806	1229	746	
20%-30%	51	256	605	249	\bigcirc
30%-40%	2	144	455	137	, ai
40%-50%	0	68	210	50	nta
50%-60%	0	3	154	1	Ę.
60%-70%	0	1	123	0	ria.
70%-80%	0	0	87	0	ŭ
80%-90%	0	0	6	0	
90%-100%	0	0	0	0	

	Est 1	Est 2	Est 3	Est 4	
0-10%	5056	4352	2823	4637	
10%-20%	92	527	1093	341	5
20%-30%	0	175	612	132	Ó
30%-40%	0	89	271	38	ru
40%-50%	0	5	140	0	1 /
50%-60%	0	0	108	0	
60%-70%	0	0	79	0	ar
70%-80%	0	0	22	0	
80%-90%	0	0	0	0	C C
90%-100%	0	0	0	0	

Number of ship candidates per range of operativity and operational zone

IV. APPLICATION CASE. Results

Pitch (Head waves)

- Natural periods are increased •
- Roll amplitudes at natural frequencies are reduced ٠ significantly.

VI. CONCLUSIONS

	Original Frigate			
	Est 1	Est 2	Est 3	Est 4
North Atlantic	0%	2%	6%	1%
Eastern	36%	45%	67%	50%
Mediterranean	5070	ч Ј / 0	0770	5070
Cantabrian	1%	3%	9%	3%
South Atlantic	1%	1%	5%	21/0

Optimum Frigate

	Est 1	Est 2	Est 3	Est 4
North Atlantic	19%	44%	73%	37%
Eastern Mediterranean	78%	86%	95%	88%
Cantabrian	37%	60%	85%	58%
South Atlantic	62%	70%	85%	78%

	Optimum	Original
L	120,70	142,20
B	21,97	20,54
Т	5,60	6,16
C _b	0,568	0,505
C _f	0,849	0,717
C _m	0,693	0,815
OE	0,659	0,146

Optimum hull

- High number of calculations (up to $2,1 \times 10^8$) to achieve best operational profile
- Most ships candidates have low OE
- Improving OE in all seasons and operational zones.
- This analysis is not allowable with traditional techniques.
- Computation times less than 48h.

V. DISCUSSION

VI. SPRAI WEB

THANKS FOR YOUR ATTENTION

jose.gutierrez@upct.es

Questions?

